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QoS-Aware Power Management via Scheduling and
Governing Co-Optimization on Mobile Devices
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Abstract—Scheduling and governing are two key technologies to trade off the Quality of Service (QoS) against the power consumption
on mobile devices with heterogeneous cores. However, there are still defects in the use of them, among which two of the decoupling
issues are critical and need to be resolved. First, both the scheduling and governing decouple from QoS, one of the most important
metrics of user experience on mobile platforms. Second, scheduling and governing also decouple from each other in mobile systems
and they might weaken each other when being effective at the same time. To address the above issues, we propose Orthrus, a
comprehensive QoS-aware power management approach that involves a governing approach based on deep reinforcement learning
to adjust the frequency of heterogeneous cores, a scheduling algorithm based on finite state machine that assigns cores to QoS-
related threads, and expert fuzzy control-based coordination mechanism between the two to manage the impact between scheduling
and governing. Our proposed approach aims to minimize power consumption while guaranteeing the QoS. We implement Orthrus
on Google Pixel 3 as the system service of Android and evaluate it using several widespread mobile applications. The performance
evaluation demonstrates that Orthrus reduces the average power consumption by up to 35.7% compared to three state-of-the-art
techniques while ensuring the QoS on mobile platforms.

Index Terms—Power management, Quality of Service, Scheduling, Governing, Mobile devices, Reinforcement learning.
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1 INTRODUCTION

W ITH the advancements on mobile devices, vari-
ous high-performance applications such as web

browser [1] [2], video [3] and game [4] have been deployed,
presenting challenges in balancing the power consumption
and application QoS. In this study, considering the typi-
cal characteristics of Android applications which usually
have a target frame rate, the standard QoS metric is the
frame rate. As the frame rate increases, the display appears
smoother, enhancing the user experience [5]. However, high
frame rates can significantly increase the system power
consumption due to the rendering of frames [6] [7].

The trade-off between power consumption and QoS on
mobile devices has always been a well-known research
area. In hardware, heterogeneous CPUs are currently de-
ployed on mobile phone System-on-Chip (SoC) designs,
the most representative of which is Arm’s big.LITTLE ar-
chitecture [8]. “LITTLE” cluster is designed for maximum
power efficiency while “big” cluster is designed to pro-
vide maximum computing performance. The LITTLE clus-
ter is utilized to handle low-computation tasks to reduce
power consumption, and big cluster is used to handle
high-computation tasks to guarantee QoS. On top of such
hardware, software solutions like scheduling and governing
contribute significantly to managing QoS and power con-
sumption on mobile devices [9]. Scheduling is responsible
for assigning threads to CPU cores, while governing controls
the frequencies of each CPU cluster. The position of QoS-
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related threads and the frequency of the core they are
located in determine the execution time of frame gener-
ation, which affects QoS and system power consumption
simultaneously. For time-sensitive tasks with strict time
requirements, they have special scheduling and governing
strategies, which are not considered in this paper.

In fact, lots of efforts have recently been made to op-
timize power management on mobile devices using these
two techniques [10]–[16]. They have focused on mapping
threads or adjusting frequency by monitoring the appli-
cation status and the workload variations. However, there
are still limitations in their current implementations, among
which two issues caused by the decoupling design of the
scheduling and governing are particularly critical and in
need of resolution.

First, both scheduling and governing decouple from
QoS on mobile devices. Specifically, current scheduling and
governing decisions are based solely on the utilization of
tasks, without considering the frame rate of upper-layer
applications, resulting in performance degradation and un-
necessary power consumption. For instance, scheduling will
migrate QoS-related threads to the LITTLE cluster to reduce
power consumption, yet the LITTLE cluster may not have
enough computing capacity, thus leading to a decrease in
QoS. Similarly, governing might increase the frequency of
the cluster due to high utilization, yet if there are few QoS-
related threads running on this cluster, power consumption
is wasted.

Second, scheduling and governing decouple from each
other. They not only fail to fulfill their respective roles but
also risk mutual interference when simultaneously effective.
For example, governing might reduce the frequency of one
cluster when some QoS-related threads are migrated to it,
or scheduling may migrate one thread from a cluster right
after its frequency increases. Furthermore, the lack of joint

0000–0000/00$00.00 © 2023 IEEE



IEEE TRANSACTIONS ON MOBILE COMPUTING, APRIL 2023 2

UI Thread

Render Thread
APP

Binder Thread

SurfaceFlinger
SF

Application

OS Kernel

GPUHardware

1
2

3

Vsync Vsync

Frame N Frame N+1

(a) Process of Frame Rendering

UI Thread

Render Thread
APP

Binder Thread

SurfaceFlinger
SF

GPU

1

Vsync Vsync

2

3

Fail

Scheduling

Frame N Frame N+1

(b) Impact of Scheduling to Frame Rendering

UI Thread

Render Thread
APP

Binder Thread

SurfaceFlinger
SF

GPU

1

Vsync Vsync

2

3

Success

Governing

Frame N Frame N+1

(c) Impact of Governing to Frame Rendering

Fig. 1: Frame rendering and the impact of scheduling and governing on frame rendering.

optimization results in large delays in the responses to each
other’s actions. Many studies [17]–[19] have focused on
the optimization of these two techniques separately, but
few have studied their interaction and made them work
efficiently together. To provide better QoS and lower power
consumption on mobile platforms, it is essential to jointly
optimize scheduling and governing with QoS awareness.

In this paper, we propose Orthrus1, a QoS-aware schedul-
ing and governing co-optimization approach for mobile
devices. First, we design a Deep Reinforcement Learning
(DRL)-based governor, which can sense QoS and system
status to adjust the frequency of CPU cluster. Secondly, we
design a new scheduler based on a Finite State Machine
(FSM), which schedules QoS-related threads and maintains
the system in a state that just satisfies the QoS. Lastly, we
design a coordinator using Expert Fuzzy Control (EFC) to
coordinate the interaction of the previous two modules, fur-
ther satisfying the QoS and reducing power consumption.
We implement Orthrus on real mobile devices and eval-
uate it with various scenarios. Through experiments, we
verify that Orthrus achieves higher QoS at lower power
consumption compared to state-of-the-art implementations.
We develop a case study where we implement Orthrus to
support users’ daily use of mobile phones for 1 hour. This
study shows the operations of Orthrus encountering various
applications and its consistent high performance and strong
practicality.

To summarize, this paper has made the following contri-
butions:

• We investigate the impact of scheduling and gov-
erning on QoS, experimentally reveal wasted power
caused by unawareness of QoS, and analyze their
interaction (§2).

• We propose a DRL-based governing strategy to con-
trol the frequency of different clusters (§4.1), and a
scheduler based on finite state machine to meet the
QoS while minimizing power consumption (§4.2).

• We analyze the relationship between scheduling and
governing, design the coordinator module to store
frequency information from the governor, and use
EFC to control the influence of the scheduler on the
governor (§4.3).

1. In Greek mythology, Orthrus was a two-headed dog who guarded
Geryon’s cattle. This paper is aimed to co-optimize scheduling and
governing (two-headed) for QoS-aware power management (guard
cattle) on mobile devices.

• We implement Orthrus at the application layer of
the Android platform on real mobile devices (§5)
and evaluate Orthrus with three popular applica-
tions (§6). We present a case study (§7), showing the
operation of Orthrus in daily use.

2 BACKGROUND AND MOTIVATION

2.1 Background

2.1.1 Frame Rendering
Frame rendering is the act of generating a frame from appli-
cations and displaying it on the screen [20], which requires
the joint efforts of software and hardware. Normally there
are three main threads to work together for that: UI Thread,
Render Thread, and SurfaceFlinger. The UI Thread and Ren-
der Thread belong to the foreground application process,
while SurfaceFlinger is Android’s system service. As shown
in Fig. 1(a), there are three steps in the frame rendering
process and each thread must execute in turn [21]. 1) UI
Thread processes input events, creates a tree of drawing
commands, and then passes them to the Render Thread. 2)
Render Thread fetches the buffer from SurfaceFlinger and
sends a rendering request to the GPU. Then, the Render
Thread enqueues the buffer into the BufferQueue managed
by SurfaceFlinger. 3) SurfaceFlinger composites buffers from
different sources such as foreground applications and navi-
gation bars. In order to coordinate the rendering and display
of frames, the system generates a Vertical Synchronization
(Vsync) signal at certain intervals to update the display
and three threads must complete their work within the
interval. In addition, Android uses the Binder mechanism
for inter-process communication, which also helps to render
frames. It is worth noting that although frame rendering
must be completed within the Vsync interval, failure to do
so does not result in severe consequences. This contrasts
with conventional real-time tasks, where exceeding these
constraints could lead to serious failures or system malfunc-
tions. Therefore, such scenarios are beyond the scope of this
paper.

The frame rate of applications on mobile devices, espe-
cially smartphones, is often a measure of QoS [22]–[26]. On
mobile devices, the QoS requirements for different applica-
tions, or even the same application, can vary greatly. For
example, chat software requires 10 frames per second (FPS),
video playback needs 24 FPS, and games choose 60 or 120
FPS depending on the hardware capacity [27].
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Fig. 2: Power consumption between optimal and native in
scheduling and governing when QoS is satisfied.

2.1.2 Scheduling and Governing on Mobile Devices

On mobile devices, scheduling is the action of allocating
core to execute threads, taking into account the different
computing requirements and system status. Governing is
another technique that can automatically adjust the fre-
quency of cores according to different situations, thus sav-
ing the system’s energy consumption. Both scheduling and
governing control the computing capacity of the system and
have a critical impact on QoS. In terms of scheduling, as
depicted in Fig. 1(b), the execution time of Render Thread
will be too long if it is scheduled to run on the LITTLE clus-
ter that cannot provide enough computing capacity. When
the next Vsync comes, the frame is not rendered in time,
resulting in a decrease in QoS. Governing also has a crucial
impact on QoS, as illustrated in Fig. 1(c). Assuming that the
governor increases the frequency of the cluster where the UI
Thread is located, the time for UI Thread to run tasks will
be shortened. In this case, the execution times of all three
threads will be shorter than the Vsync interval, ensuring the
generation of a perfect frame and thus providing a better
user experience.

However, current scheduling and governing techniques
are unaware of user-level QoS. The native scheduler used
by mobile operating systems on heterogeneous platforms is
Energy Aware Scheduling (EAS) [28], which schedules threads
to the core with the lowest power consumption using the
power model provided in advance by the hardware, ignor-
ing the optimization of QoS. As a result, threads assigned
to cores with inadequate computing capacity will suffer
from increased execution time, ultimately degrading QoS.
According to different purposes, there are many governors
on mobile devices to choose from [29]. For example, the
performance governor sets the frequency to the maximum
for best performance, while the powersave governor sets the
frequency to the lowest value to save power as much as
possible. As Android’s default governor, schedutil adjusts
the frequency based on the computing capacity of the cluster
and the maximum load within the cluster. Nevertheless,
there exists a mismatch between QoS and CPU utilization. A
thread that contributes to frames may have low utilization,
while a thread that does not contribute to frames may have
high utilization. In this case, schedutil will incorrectly set
the frequency, resulting in loss of QoS and waste of power
consumption. Essentially, current schedulers and governors
make decisions based on CPU utilization, neglecting the
upper-layer QoS. Furthermore, the work of the two mod-
ules is decoupled, resulting in suboptimal QoS and wasted
energy consumption (we will detail it in Section 2.2).

2460mW 

Fig. 3: Normalized power consumption, QoS, and break-
down of CPU resources for TikTok applications at differ-
ent computing capacities. CPU cycles are broken down
into foreground applications (FG), background applications
(BG), and being idle.

2.2 Motivation

We conduct some measurements to demonstrate the poten-
tial enhancement of existing scheduling and governing ap-
proaches. The results demonstrate that the co-optimization
of QoS-aware scheduling and governing has a great oppor-
tunity to reduce power consumption while achieving the
target QoS.

We perform all measurements on Google Pixel 3, the
same device used in the experimental section 2. We use
TikTok, Youtube, and Netflix applications as foreground
applications with a target QoS of 60 FPS. In addition, we
run three different loads of CPU-stress, Memory-stress and
I/O-stress in the background to simulate the system load of
the smartphone. The CPU-stress uses eight processes for the
square root calculation, Memory-stress uses eight processes
that malloc 256MB of memory each and write characters
to dirty it, and the I/O-stress uses eight processes to exe-
cute the sync() function continuously. The source code and
implementation details of the stress program are available
online [30].

2.2.1 The Decouple Design of Governing and QoS Opti-
mization

We use three different applications as foreground appli-
cations, and the CPU stress runs in the background. By
traversing all the frequency points, we can find the fre-
quency point that meets the user’s QoS and consumes the
least power. This method is called optimal governor. As
shown in Fig. 2(a), with both the optimal and native (schedutil)
meeting QoS requirements, the average power consumption
of the optimal is 64.8% lower than that of the native.

As shown in Figure 3, we take TikTok as an example
and reveal why there is such a large waste of power con-
sumption by analyzing the changes in power consumption,
QoS, and CPU cycle breakdown when the CPU frequency
goes from high to low. We find that because native adjusts
the frequency of clusters based solely on the CPU utilization,

2. In this paper, the unit of power consumption is milliwatts (mW).
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Fig. 4: FPS and FPS/Power at different frequency points
when threads are aggregated on the big cluster or not.

when CPU stress causes an increase in CPU utilization,
native will adjust the CPU to a very high frequency. At
this time, the computing capacity is largely supplied to
applications unrelated to QoS, resulting in a waste of power
consumption. As the frequency decreases, the CPU idle
time drops to negligible. Since foreground applications have
higher priority than background applications and mobile
device manufacturers will use some mechanisms to protect
foreground applications, the CPU resources obtained by
background applications are further reduced, while the CPU
resources of foreground applications are not affected. At this
time, there is no loss of QoS, and the power consumption is
reduced by more than 2000 mW. In real-world scenarios,
these background services such as GPS refresh have little
impact on the QoS, but the existing governor native will
introduce much power consumption waste.

Observation 1: There exists a clear gap between the
performance of governing and the optimal QoS. Ideally,
the governor should reduce the frequency as much as pos-
sible while ensuring the QoS, and slow down the operation
of tasks that are unrelated to the QoS, thereby significantly
saving power consumption.

2.2.2 The Decouple Design of Scheduling and QoS Opti-
mization
We use TikTok as the foreground application and run three
different stress programs in the background. By traversing
all possible core assignments for threads that contribute to
frame rendering, such as the UI Thread, Render Thread,
SurfaceFlinger, and Binder Thread, we select a scheduling
policy that satisfies QoS and minimizes power consumption.
This method is named optimal scheduler. For a system with
n threads and m CPU cores, the scheduling problem can be
modeled as an n-dimensional vector, where each element
has m possible values. Therefore, the time complexity of
exhaustively searching for the optimal solution is O(mn),
which is impractical. As a result, the optimal scheduler is
employed solely to uncover inefficiencies in the native (EAS)
scheduling strategy and to demonstrate the gap between
the native strategy and an optimal strategy. As shown in
Fig. 2(b), the average power consumption of the optimal is
36.1% lower than that of the native. This is because native
schedules each thread on the core with the least power
consumption and does not give special treatment to threads
related to QoS. Even if there is Cgroup mechanism [31] that
puts the foreground application thread on big cluster or

TABLE 1: Optimal frequencies under different scheduling
strategies for UI Thread (U), Render Thread (R) and Surface-
Flinger (SF). b denotes the big cluster; L denotes the LITTLE
cluster; n denotes the native choice.

U R SF Power (mW) LITTLE
Frequency (GHz)

big
Frequency (GHz)

b b b 1284 0.3 0.8
b b L 1354 0.6 0.8
b L b 1554 1.1 0.8
b L L 1488 1.1 1.3
L b b 1388 0.9 0.8
L b L 1398 0.9 0.8
L L b 1512 1.1 0.8
L L L 1508 1.1 0.3
n n n 1750 n n

increases the priority, it does not address the fundamental
problem that the scheduler lacks upper-layer QoS aware-
ness.

Observation 2: existing scheduling schemes do not
work closely with QoS. The scheduler can operate more ef-
ficiently based on the information from the application layer,
and can assign cores with different computing capabilities
to QoS-related threads depending on whether the QoS is
satisfied.

2.2.3 The Decouple Optimization of Governing and
Scheduling on QoS

In the current state of research, scheduling and governing
are often optimized separately. While some studies have
focused on optimizing QoS, they have done little joint work
for scheduling and governing, which can result in subopti-
mal performance and energy consumption. To demonstrate
this deficiency, we conducted an experiment using TikTok as
the foreground application and aggregating several threads
that contribute to frame rendering on the big cluster. The
results, shown in Fig. 4, indicate that the placement of
QoS-related threads on the big cluster can lead to im-
proved frame rate and energy efficiency. This highlights the
significant impact that scheduling can have on governing
and the importance of considering both components in the
optimization process.

In order to gain a deeper understanding of the inter-
action between scheduling and governing, we place UI
Thread, Render Thread, and SurfaceFlinger on different
clusters, and traverse to obtain the frequency point that
meets QoS and has minimum power consumption. The
results, as shown in Table 1, reveal that different scheduling
strategies result in varying optimal frequencies and power
consumption. For example, as illustrated in the first two
lines, when the threads are mainly scheduled in the big
cluster, the frequency of the LITTLE cluster can be reduced
to the minimum, while the frequency of the big cluster
can be mainly increased to provide computing capacity. A
similar pattern is observed when the threads are scheduled
on the LITTLE clusters. If we can accurately characterize the
impact of scheduling and governing, we can further reduce
power consumption while meeting the QoS.

Observation 3: mutually decoupled scheduling and
governing still have room to further optimize QoS and
power consumption. The scheduling information of threads
associated with the frame rendering can be provided to the
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governor so that the governor can consider it when adjust-
ing the frequency. Simultaneously, the frequency informa-
tion of the cluster can also be shared with the scheduler
to allocate the best cores to threads. This synergy between
the two will lead to further power savings and performance
enhancements.

3 DESIGN OVERVIEW

3.1 Challenge and Key Design Choice

The decouple issues introduce modifications to the system’s
scheduler and governor modules while adding a coordina-
tor module to coordinate behavior between the two. There-
fore, we face three unique challenges.
Challenge 1: Unlike the conventional governors that only
take into account utilization, our design must also consider
QoS and system conditions such as CPU, memory, and
IO. The system environment is intricate and challenging
to model, making it difficult to determine the optimal fre-
quency for a given situation.
Design 1: A Proximal Policy Optimization (PPO) based
governing approach that trains an intelligent agent based
on QoS and system conditions. The actor and critic neural
networks take the system state, application characteristics,
and QoS as inputs and adjust the cluster frequency to
minimize power consumption while satisfying the QoS. The
overhead of utilizing the PPO algorithm is relatively small
compared to the benefits of reduced power consumption,
making the PPO-based algorithm suitable for power man-
agement, which will be further discussed later.

Challenge 2: The QoS of upper-level applications is chal-
lenging to transmit to the scheduler in the kernel. The sched-
uler is unable to detect QoS dissatisfaction and wastage in
power consumption.
Design 2: A Finite State Machine based scheduling al-
gorithm which divides the system state into three parts
using task-clock information and Instructions Per Second
(IPS) to reflect the QoS of the upper layer. The scheduler
then transfers states that can not meet the QoS and result
in unnecessary power consumption into the state where the
computing capacity precisely meets the desired QoS.

Challenge 3: The interconnections between scheduling and
governing are intricate and dynamic. Once threads have
been scheduled, any changes in the computing capacity
needed by the cluster will impact the governing process. In
turn, when the governor adjusts the cluster frequency, it will
affect the states of the scheduler and cause state transitions.
There is currently no accurate model for quantifying the
interplay between these two processes due to the dynamic
nature of thread placement, computing requirements, and
system state.
Design 3: An Expert Fuzzy Control based coordinat-
ing mechanism aimed at coordinating the impact between
scheduling and governing. The EFC method utilizes utiliza-
tion and priority information provided by the scheduler as
inputs, and outputs governing hints for the governor. Addi-
tionally, it records frequency information from the governor
and passes it to the scheduler when invocated.
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Fig. 5: Architecture of Orthrus.

3.2 Orthrus Architecture
We now present the design of Orthrus, a co-optimization
approach that makes scheduling and governing aware of
QoS and jointly minimizes power consumption while satis-
fying QoS. Fig. 5 illustrates three key components of Orthrus.
The Governor module learns application characteristics and
system workload fluctuation to control the frequency of
clusters through deep reinforcement learning (§4.1). The
Scheduler module assigns QoS-related threads priorities
and schedules them onto different clusters based on their
performance requirements and priorities through finite state
machine (§4.2). This leads to a different distribution of
threads, providing the potential to improve performance
and reduce power consumption. To fully exploit this poten-
tial, a Coordinator module is introduced, which coordinates
the scheduler and governor through expert fuzzy control
(§4.3). The coordinator receives priority and utilization in-
formation on each cluster from the scheduler, and fine-scales
the frequency through a set of rules based on a human
expert’s knowledge.

The workflow of Orthrus includes three steps: 1) At
fixed time intervals, the governor monitors the system status
and adjusts the frequency, and then transmits information
about the frequency to the coordinator. 2) Triggered by
the event where the system deviates from the moderate
state, the scheduler runs the scheduling algorithm to mi-
grate threads, and then updates the cluster utilization and
priority to the coordinator. 3) The coordinator exchanges
information when the governor or scheduler is running,
passing frequency to the scheduler and governing hints to
the governor.

4 ORTHRUS DESIGN

4.1 A Proximal Policy Optimization Based Governing
Approach
4.1.1 Problem Formulation
We define Q(t) to represent the performance of the appli-
cation as QoS at time t. In this context, t refers to a specific
discrete time step or sampling instance in the operational
process of the application. For video or gaming applications,
Q(t) is usually a function of the frame rate, which is used
to ensure that the frame rate exceeds a certain level [12].
Let P (t) denote the function of the instantaneous power
consumption of the CPU at time t. Q(t) and P (t) represent
performance and power consumption respectively, and are
normalized values (we will discuss it in Section 4.1.3), so
they can be used for comparison. For scalability, we assume
that there are multiple clusters with different computing
capabilities and energy efficiency on heterogeneous CPUs.
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Let C denote the set of CPU clusters. Let fc ∈ Fc denote
the frequency of cluster c, where Fc denotes the available
frequency points of cluster c 3. Let π denote the set of avail-
able policies controlling the different CPU cluster frequency
from t = 1 to t = T , (fc(1), ... ,fc(T )), which is the key
determinant. Then, the problem of maximizing Q(t) and
minimizing P (t) on average for T can be formulated as
QoS-aware Governing Optimization (QGO) Problem:

max
π

1

T

T∑
t=1

{Q(t)− P (t)} (1)

s.t.fc(t) ∈ Fc, ∀t ∀c (2)

where fc(t) denotes the configured frequency of cluster c at
time t. Constraint (2) is limited by the hardware. By subtract-
ing P (t) from Q(t), we illustrate the objective of enhancing
performance while reducing power consumption.

4.1.2 Problem Analysis

The complexity and variability of system conditions pose a
challenge in solving the QGO problem. This results in the
need for dynamic frequency adjustments to optimize the
performance and power of the system. For instance, CPU,
memory, and IO resources in the system will affect the QoS
of foreground applications to varying degrees and interfere
with each other. It is thus difficult to model the relationship
between system conditions and cluster frequency.

We thus seek a learning-based approach. Our problem
is intrinsically a control optimization problem, and the so-
lution falls into the Reinforcement Learning (RL) algorithm.
At a high level, RL is commonly used for a control prob-
lem where the control actions directly impact future states.
Moreover, it interacts with the environment and learns the
optimal decisions based on feedback without relying on an
explicit model, which matches the governing problem.

When selecting an appropriate RL algorithm, it is critical
to consider factors such as resource constraints of mobile
devices, the complexity of the learning process, and the
difficulty of parameter tuning. In this context, we adopt
proximal policy optimization, a state-of-the-art actor-critic
reinforcement learning algorithm [32] in Orthrus. The tra-
ditional actor-critic is a policy gradient method, and the
principle is as follows:

ĝ = Êt

[
∇θlogπθ

(αt|st)Ât

]
(3)

3. For example, the available frequency points for the LITTLE cluster
of Google Pixel 3 are {300000 403200 480000 576000 652800 748800 8256
00 902400 979200 1056000 1132800 1228800 1324800 1420800 1516800
1612800 1689600 1766400}(the units are all in kHz).

Algorithm 1: PPO-based Governing, Actor-Critic
Style

Input: Initial policy πθold
Output: Optimal policy πθnew

1 for interation=1,2,... do
2 for actor=1,2,...,N do
3 Run policy πθold in environment for T timesteps
4 Compute advantage estimates Â1, ..., ÂT

5 Optimize surrogate Lt(θ), with K epochs and minibatch
size M ≤ NT

6 θold ← θ

7 πθnew ← πθold
8 return πθnew

where πθ is a stochastic policy and Ât is an estimator
of the advantage function at time t, Here, the expectation
Êt [...] indicates the empirical average over a finite batch of
samples [33]. The critic provides guidance to the actor by
estimating the expected cumulative reward given a certain
state and action. The actor then adjusts the policy to in-
crease the probability of selecting actions that lead to higher
reward estimates from the critic. In our approach to solving
the QGO problem, the stochastic policy πθ represented in
Equation (3) is tailored to define the probability of selecting
discrete frequency actions based on the current system state.
The estimator Ât quantifies the benefit of choosing a partic-
ular action over others in terms of achieving the desired QoS
while minimizing power consumption.

However, the high variance in estimating the gradient
of the policy of this traditional policy gradient method is
challenging to control. This can lead to slow convergence
and instability in the training process. Meanwhile, it can get
trapped in local optima and fail to converge to the optimal
policy. Therefore, we used a better-performing method -
PPO. The main objective of PPO is:

Lclip(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

]
(4)

where ϵ is a hyperparameter, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

modifies the surrogate objective by clipping the probability
ratio rt(θ), which removes the incentive for moving rt(θ)
outside of the interval [1 − ϵ, 1 + ϵ]. Let rt(θ) denote the
probability ratio:

rt(θ) =
πθ(at|st)
πθold(at|st)

(5)

This modification is particularly crucial for the QGO
problem as it ensures that the policy updates are not only
conducive to learning effective governing strategies but also
preserve the stability necessary for deployment on resource-
constrained mobile devices. The probability ratio rt(θ) in
Equation (5) ensures that the updates to the policy are
proportional to the change in the probability of taking the
current action under the new policy compared to the old.
Furthermore, PPO makes efficient use of the collected data
by using multiple epochs of mini-batch updates, which
ensures that the agent learns as much as possible from
the experience it has gathered. We present more details in
Algorithm 1.

Below, we will introduce the state, action, and reward
we design and the ideas behind them.
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TABLE 2: State, Action and Reward.

State s(t) fc(t), uc(t), q(t), p(t), cm(t), pf(t)

Action a(t) fc(t)

Reward r(t) Q(t)− P (t)

4.1.3 State, Action & Reward Design
As Fig. 6 shows, an agent (neural networks) reads the
environment (mobile system) states and takes actions (CPU
frequency) based on the probability distribution given by
the policy πθ(St, at). After executing each action, the envi-
ronment will give us corresponding feedback, which will
be used as observations of the environment for the agent
to make the next decision. The agent’s objective is to learn
an optimal policy that maximizes the expected return, i.e.,
performance per watt, by taking optimal actions. Orthrus
solves the QGO problem with PPO, which adapts to dy-
namic system workloads while ensuring performance re-
quirements and minimizing power consumption. Here, we
describe how we customize PPO for Orthrus by redefining
state, action, and reward.

State. Our states are defined by a tuple containing six
parameters, as shown in Table 2. In addition to monitoring
power consumption p(t) and frame rate q(t) of foreground
application at time t, we monitor CPU frequency fc(t) and
CPU utilization uc(t) for each cluster c. Moreover, we mon-
itor some Performance Monitoring Unit (PMU) events to
reflect the characteristics of the application. After perform-
ing correlation analysis on multiple PMU events, we inte-
grate PMU events (cm(t), pf(t)) to reflect the consumption
of memory and I/O resources of the application. Specifi-
cally, we use LLC CACHE MISS (cm(t)) which counts the
number of Last-Level-Cache (LLC) misses in memory, and
PAGE FAULTS (pf(t)) which counts the number of page
faults for I/O resource.

Action. We define the combination of frequency points
fc(t) of each cluster c as actions, which are performed using
the clipping mechanism. The clipping mechanism limits the
updates to the policy, ensuring that they remain within
a reasonable range and preventing excessive exploitation.
During the exploration phase, the agent takes uniform ran-
dom actions across the frequency range to collect training
data. In the exploit phase, the action a(t) that maximizes
the reward will be chosen to converge the model.

Reward. We propose a well-designed reward function
as shown in Table 2. The reward function consists of Q(t)
and P (t). QoS reward is designed with the following con-
siderations. 1) No additional reward should be given for
exceeding the target frame rate G. We use the min function
to avoid the agent constantly increasing the frequency to
get a higher reward. 2) Below a certain frame rate, there
are severe penalties. We introduce Qa to indicate the QoS
the user can tolerate. When the QoS is less than this value,
the reward becomes negative. P (t) and Q(t) are defined as
follows.

Q(t) = αmin

(
q(t)−G

G−Qa
+ 1, 1

)
(6)

P (t) = β
p(t)

M
(7)

U M O

Migrate to Big Migrate to Little
QoE
Low

Power
Waste

Fig. 7: The vary of IPS and Task Clock when computing
capacity growing.

where M denotes the maximum power consumption of
the mobile device, which is used to normalize the reward of
power consumption, as the scale of p(t) is in the hundreds
or thousands. α and β are trade-off weights to balance
performance and power consumption according to user
preferences, with value 0 ≤ α, β ≤ 1.

4.2 A Finite State Machine Based Scheduling Algo-
rithm
There are three states in the system: 1) The computing
capacity is Underprovisioned (U) to satisfy QoS. 2) The
computing capacity is Overprovisioned (O), which exceeds
the requirements for QoS but wastes power consumption. 3)
The computing capacity is Moderate (M) for both QoS and
power consumption. Fig. 7 illustrates the variation of task-
clock, IPS, and FPS of the foreground application thread.
Task-clock reports a clock count specific to the task that
is running, which can be regarded as the execution time
of the thread. Computing capacity indicates the amount of
computing power that the hardware can provide for tasks.
We control changes in computing capacity by adjusting
frequency and thread migration. As the computing capacity
increases, the IPS of the thread gradually increases, and
the assigned task-clock remains unchanged due to CPU re-
source competition. At this time, the IPS is less than Min IPS
and the computing capacity is deemed underprovisioned
for the QoS requirements. When IPS is not less than Min
IPS, the instructions to be executed gradually saturate, thus
the task-clock allocated to threads decreases with more com-
puting capacity. When the task-clock is below Min clock, the
computing capacity is considered overprovisioned. There-
fore, the scheduler can distinguish the three states through
the IPS and task-clock of the foreground thread. To meet QoS
and save power consumption, the scheduler should transfer
from either of the first two states to the moderate state
through migrating threads.

To this end, we develop a Finite State Machine based
Scheduling Algorithm as shown in Algorithm 2. First, we
calculate the priority ik of each thread among n threads
(Line 1-3) based on Eq. (8).

ik = tck/

n∑
k=1

(tck) (8)

If the thread’s task-clock accounts for more, it means that its
contribution and criticality to the frame are higher, which
should be given high priority. Then we arrange cluster C in
positive order by computing capacity (Line 4). After getting
the index c of cluster where the thread is located (Line
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Algorithm 2: FSM-based Scheduling
Constant: MIPSk : Min IPS , MTCk : Min Task Clock
Input: C: Cluster set, K: Threads number,

tck : Threads Task Clock, ipsk : Threads IPS
Output: uc(t+ 1): Utilization of cluster c at time t+ 1

ic(t+ 1): Priority of cluster c at time t+ 1
fc(t+ 1): Frequency of cluster c at time t+ 1

/* Calculate threads priority based on tck */
1 for k ← 1 to K do
2 ik = tck /

∑K
k=1(tck)

3 Sort threads based on priority ik with reverse order
4 Sort C based on computing capacity with positive order
/* Scheduling based on tck and ipsk */

5 for k ← 1 to K do
6 c← get cluster of thread(k, C)
7 if ipsk ≤MIPSk then

/* Computing Capacity Underprovision */
8 if not exist stronger cluster then
9 fc(t+ 1)← min(fc(t)max,MIPSk/ipsk ∗ fc(t))

10 else
11 if exists freq f s.t. f/fc(t) > MIPSk/ipsk then
12 fc(t+ 1)← f

13 else
14 Migrate thread to cluster c+ 1
15 Update

uc(t+ 1), uc+1(t+ 1), ic(t+ 1), ic+1(t+ 1)

16 else if tck ≤MTCk then
/* Computing Capacity Overprovision */

17 if not exist weaker cluster then
18 fc(t+ 1)← max(fc(t)min, tck/MTCk ∗ fc(t))
19 else
20 if exists freq f s.t. f/fc(t) < tck/MTCk then
21 fc(t+ 1)← f

22 else
23 Migrate thread to cluster c− 1
24 Update

uc(t+ 1), uc−1(t+ 1), ic(t+ 1), ic−1(t+ 1)

25 return uc(t+ 1), ic(t+ 1), fc(t+ 1) of all clusters

6), we detect the U and O states based on task-clock and
IPS (Line 7-24). If the thread IPS is less than Min IPS, we
satisfy the QoS by scheduling threads to a stronger cluster,
which means a cluster with greater computing capacity, or
scaling up the frequency (Line 7-15). Conversely, if the IPS of
threads is sufficient and the task-clock drops below the Min
Clock, we schedule threads to a weaker cluster, implying
a cluster with lesser computing capacity, or scale down
the frequency to save power consumption (Line 16-24). We
prioritize the behavior of governing to satisfy QoS. This is
because the scheduling overhead (∼2ms) tends to be higher
than the governing (∼500µs) due to cache affinity, etc [11]
[34]. Lastly, we return the recalculated cluster priority and
utilization information needed by the coordinator.

4.3 An Expert Fuzzy Control Based Coordinating Mech-
anism

The interplay between governing and scheduling is sub-
stantial. The actions taken by the governing algorithm can
impact the state transition of the scheduling algorithm,
while scheduling can affect the perception of the system
conditions by the governing algorithm. To address this, we
propose a coordinating mechanism that utilizes expert fuzzy
control.

Inference
Machanism

Expert rule-base

f(t)
D

efuzzification

Coordinator

Fuzzification

EFC Design

u(t)

i(t)

Frequency

Scheduler

G
overnor

f(t+1)

Scale Hint
f(t+1)

Fig. 8: The coordinator design.

The coordinating mechanism is responsible for passing
governing hints when the scheduling algorithm changes
state so that the governor can respond to system state
changes in a timely manner, and transmitting the frequency
information when the governing algorithm changes the
frequency to make the scheduling algorithm perform better.
As Fig. 8 depicts, the coordinator consists of three modules:
EFC Design and Scale Hint for the governor and Frequency
module for the scheduler.

Scheduling Impact on Governing. When threads are
scheduled, the loads on clusters change dynamically. For
instance, when a thread is moved from cluster A to cluster B,
the load on A is reduced, while the load on B is increased. In
this situation, if cluster A continues to maintain its previous
frequency, it may result in power wastage, and if cluster
B is left unchanged, the QoS may be compromised. The
RL Governor will take several cycles to detect changes
in the load. Therefore, it is essential for the scheduler to
provide the governor with direct information to enable a
prompt and accurate response. Since it is difficult to model
this dynamism when we need to consider both utilization
and priority changes of running threads, we use EFC to
coordinate the interaction of scheduling and governing. EFC
can exploit model-independent fuzzy control techniques to
address the issue of lacking accurate performance-power
models due to high workload dynamics [35].

EFC aims to translate expert knowledge into control
rules, which are defined using linguistic variables corre-
sponding to the two inputs, u(t) and i(t). The fuzzification
process converts the numeric inputs into linguistic values
such as NL (negative large), NS (negative small), ZE (zero),
PS (positive small) and PL (positive large). The rules are in
the form of If-Then statements. For example, if u(t) is PL
and i(t) is PL, the adjustment in CPU frequency is f(+1).
The rationale behind this rule is that cluster frequency
should increase since the utilization and priority of threads
running on this cluster grow. Similarly, various rules are
designed to determine the CPU frequency based on the
utilization and priority in the cluster. The Scale Hint aims to
make a balance between fuzzy control and formula calcula-
tion by Algorithm 2. It compares two frequencies and selects
a reasonable one. When the frequency is scaled down, the
maximum of the two is selected. When the frequency is
scaled up, the minimum of the two is selected.

Governing Impact on Scheduling. Adjusting the clus-
ter frequency by the governor may cause a change in
computing capacity, which will result in a state transition
from Moderate to other states and impact the scheduling
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Fig. 9: Experimental equipment of Orthrus.

process. During state transitions, governing takes prece-
dence over scheduling for the scheduler. Therefore, access-
ing the current frequency and adjustable frequency range
of the cluster is vital to finding a frequency that meets the
QoS requirements and ensures energy efficiency. Since the
governor and scheduler have different running times, the
governor should provide frequency-related information to
the Frequency module at runtime via shared memory. The
module then uses this information to assist the scheduler in
making optimized decisions.

5 IMPLEMENTATION

We implement Orthrus with Python 3.7 and Java 11.0.13
on Google Pixel 3. The implementation of Orthrus includes
four steps: state collection, neural network deployment,
frequency setting, and thread scheduling. We develop the
Orthrus in GitHub, and we plan to release the codes as open
sources.

State Collection. All needed system information can be
obtained by sysfs [36] provided by Linux or some commands
provided by the Android kernel. We read the specified file
from sysfs to get CPU frequency and call linux perf event
syscall [37] to get the PMU event. Frame rates can be
collected by dumpsys SurfaceFlinger command and power
consumption can be measured with Monsoon Power Moni-
tor [38].

Neural Network Deployment. The neural network can
be implemented by TensorFlow Lite [39], an open-source
library for machine learning on mobile devices. As de-
scribed in Algorithm 1, the PPO model interacts with the
environment by controlling the frequencies and then collects
data (status, actions, and rewards) to update the parameters
of the network. This process is repeated until the preset
number of iterations is completed. We first train our PPO
Model on the computer, then convert it to a TensorFlow Lite
format file and deploy it on an Android device.

Frequency Setting. Implementing our governing pol-
icy at the user level is allowed by Android. Android al-
lows privileged users to set CPU frequency after setting
governor as userspace (writing userspace to /sys/devices/sys
tem/cpu/cpufreq/policyX/scaling governor file). Then, we can
control the frequency of the CPU by setting the file interface
(/sys/devices/system/cpu/cpufreq/policyX/scaling setspeed).

Thread Scheduling. We use the taskset command to con-
trol which core a thread runs on. The pid of SurfaceFlinger
remains constant without reboot and can be gotten by run-
ning ps command once. The tids of foreground application

TABLE 3: Baselines specifications.

Baseline Module
Scheduler Governor Coordinator

Android def EAS Schedutil ✕

SmartBalance Anneal ✕ ✕

zTT ✕ DQN ✕

AdaMD Adaptive Mapping Bin Classfication ✕

Orthrus FSM PPO EFC

TABLE 4: Applications and background workload.

Foreground App Target QoS Description Stress

TikTok 60 FPS Video rendering S1: No application

Genshin 30 FPS Mobile game
S2: Download files &

Load Image

Instagram 60 FPS Social Media S3: Zip/Unzip files

change every time the application is restarted, which can be
gotten dynamically by dumpsys windows and ps command.

Finally, we implement Orthrus as a self-start service
in the Android system. When the foreground application
starts, it will automatically obtain relevant information such
as pid, frame rate, etc., and perform scheduling and govern-
ing.

6 EXPERIMENT

6.1 Methodology

Testbed. As illustrated in Fig. 9, our experimental equip-
ment consists of mobile devices running the Orthrus pro-
gram, a Monsoon Power Monitor measuring power con-
sumption, and a PC machine running the monitoring pro-
gram. We evaluate Orthrus on a Google Pixel 3 which is
equipped with Snapdragon 845 SoC, 4GB memory, and runs
Android 11. The SoC has 4 Kryo 385 Gold cores (big cluster)
and 4 Kryo 385 Silver cores (LITTLE cluster).

Workloads. We use three popular applications as the
foreground application, and three common applications as
the system load, including file downloading (IO-Stress),
image loading (Memory-Stress) and file compressing (CPU-
Stress), to comprehensively test Orthrus performance. The
details of experimented applications are summarized in
Table 4.

To comprehensively evaluate the effectiveness of Or-
thrus, we performed assessments under three distinct op-
erational scenarios:

• No Background Application Running (Light Work-
load): This scenario reflects a minimal system load
with no additional background applications running.
It simulates the condition where the primary appli-
cation operates in isolation, facing minimal competi-
tion for system resources.

• Running with Background Privileges (Medium
Workload): For a more moderate level of workload,
we introduce specific background applications per-
forming tasks such as file downloading and image
loading. This scenario mimics a common real-world
usage pattern where the system concurrently handles
secondary tasks.

• Running with Foreground Privileges (Heavy Work-
load): To simulate a high-demand environment, we



IEEE TRANSACTIONS ON MOBILE COMPUTING, APRIL 2023 10

0.00

0.01

0.02

0.03

0.04

0.05
Q

oS
 L

os
s

default zTT Smartbalance AdaMD Orthrus

TikTok Genshin Instagram
Workload

1500

2000

2500

3000

Po
w

er
 c

on
su

m
pt

io
n

(a) light workload

0.00

0.01

0.02

0.03

0.04

Q
oS

 L
os

s

default zTT Smartbalance AdaMD Orthrus

TikTok Genshin Instagram
Workload

1500

2000

2500

3000

3500

4000

Po
w

er
 c

on
su

m
pt

io
n

(b) medium workload

0.00

0.05

0.10

0.15

0.20

Q
oS

 L
os

s

default zTT Smartbalance AdaMD Orthrus

TikTok Genshin Instagram
Workload

2000

3000

4000

5000

Po
w

er
 c

on
su

m
pt

io
n

(c) heavy workload

Fig. 10: Performance loss and power consumption of our work and four baselines in three situations.
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Fig. 11: Analysis of scheduling and governing of Orthrus and baselines, where the red circles are the moments of QoS loss.

use CPU-intensive tasks like file compression and
decompression running in the foreground. This setup
is designed to emulate a realistic user scenario where
multiple applications, including those requiring sig-
nificant CPU resources, are active simultaneously.

These three scenarios are crafted to encapsulate a com-
prehensive spectrum of system conditions, mirroring the
diverse usage patterns encountered in typical mobile device
operations.

Baselines. We compare Orthrus with four state-of-the-
art works. Table 3 shows the specification of these works.

• Android default uses EAS scheduling algorithm and
schedutil governing scheme to improve performance
and optimize power consumption.

• SmartBalance [10] uses the scheduling strategy with
the best energy efficiency according to the IPS and
power of different clusters of tasks.

• zTT [12] adopts a reinforcement learning algorithm
to optimize governing, which aims to meet QoS and
reduce power consumption.

• AdaMD [11] designs an adaptive thread-to-core map-
ping for each performance-constrained application
and a DVFS algorithm to handle workload varia-
tions.

Unless otherwise specified, the scope of the Orthrus
scheduling algorithm includes UI Thread, Render Thread,
Surfaceflinger, and Binder Thread. The time interval of the
governing algorithm is 1 second (we will discuss it in
Section 6.4), and the load used is light workload. The power
consumption on mobile devices is experimentally measured
to be hardly more than 5000 mW, so M is preset to 5000. α

and β are both set to 1 to indicate that QoS and power are
equally valued, which is also the demand of most users.

Metrics. We use two metrics to evaluate the performance
of Orthrus and the baselines:1) QoS Loss quantified the satis-
faction degree of service quality. Since different applications
have different target frame rates, QoS Loss is used as an
indicator. QoS loss is computed as

∑T
t=1

G−q(t)
GT ; and 2)

Power Consumption shows the effect of Orthrus on energy
saving.

6.2 Overall Performance

6.2.1 Results of Light Workload

Fig. 10(a) shows the QoS loss and power consumption of
default, zTT, Smartbalance, AdaMD and Orthrus. We observe
that Orthrus suffers the least QoS loss compared to the base-
lines, since it provides strict QoS guarantees while saving
energy. Under three applications, the average power con-
sumption is reduced by 8%, 5%, 3.5%, and 2.5% compared
to default, zTT, Smartbalance and AdaMD, respectively. When
no background applications are running, there is less room
to reduce power consumption.

During experiments, we found that under light load, the
clusters under each method run at a low frequency and
the scheduling plays an important role in overall perfor-
mance. As shown in Fig. 11(a), we compared the scheduling
and governing operations of Orthrus and zTT. zTT adopts
default scheduling policy EAS, which always seeks the
core with the least power consumption for threads without
considering QoS. Therefore, the three red circles in zTT all
indicate that QoS-related threads are frequently migrated
to the LITTLE cluster due to lower power consumption.
However, the frequency of the LITTLE cluster is low and
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ent methods.

cannot provide sufficient computing capacity, resulting in
a QoS decline. In Orthrus, the scheduler detects from the
beginning based on IPS and task-clock that the LITTLE clus-
ter cannot meet the computing requirements of two threads,
and migrates them onto the big cluster. Subsequently, the
scheduler observed that the system was always in the mod-
erate state, and did not migrate threads frequently, ensuring
that the target QoS could always be met.

6.2.2 Results of Medium Workload
As shown in Fig. 10(b), Orthrus is more effective when
running download files and load images as background
applications. With the smallest QoS loss, Orthrus reduces
the power consumption of 17%, 6.4%, 20.7% and 5.3%
on average in the three applications compared to default,
zTT, Smartbalance and AdaMD. Smartbalance consumes more
power and has more loss in QoS. This is because Smart-
balance adopts the default governing policy schedutil, which
adjusts the cluster frequency based on utilization without
considering QoS. As shown in Fig. 11(b), background ap-
plication runs on the LITTLE cluster most of the time,
thus the LITTLE cluster of Smartbalance always stays at the
highest frequency due to high utilization, which contributes
little to QoS while wasting much power. The three red
circles in Fig. 11(b) indicate that in Smartbalance, the cluster
frequency does not respond when QoS-related threads are
scheduled. In Orthrus, the first red circle indicates that after
the thread migration, the governor adjusted the LITTLE
cluster to a moderate frequency, thus saving a lot of power
consumption. The second red circle shows that the thread
migrates to the big cluster when the system fluctuates. At
this time, the governor quickly adjusts the frequency ac-
cording to the system status and scheduler information, and
returns to the previous frequency after the thread migrates
back to the LITTLE cluster in time.

6.2.3 Results of Heavy Workload
Fig. 10(c) shows the QoS loss and power consumption
when running heavy workload. Compared with the base-
line, Orthrus still achieves better QoS and lower power
consumption by 35.7%, 23.8%, 31.8% and 25.3% compared
to default, zTT, Smartbalance and AdaMD, respectively. In this
case, we find that AdaMD is not as effective as before, with
more wasted power consumption and QoS degradation.
So we analyze the scheduling and governing behavior of
AdaMD and Orthrus, as shown in Fig. 11(c). The results
indicate that AdaMD lacks a collaborative optimization of
scheduling and governing, resulting in a delayed governor
response after each scheduling event. The three red circles
are QoS drops caused when the frequency of the big clus-
ter is not increased after the thread is scheduled onto it.

Additionally, the frequency of the LITTLE cluster is not
adjusted in accordance with the scheduling, leading to a
waste of power consumption. In Orthrus, every time a QoS-
related thread is scheduled, the coordinator will convert the
scheduling information into the frequency of the cluster and
pass it to the governor to ensure timely governing. At the
same time, the frequency on the cluster will also be fed back
to the scheduler to ensure reasonable scheduling. Therefore,
as Fig. 11(c) depicts, the scheduling and governing of Or-
thrus are co-optimized to ensure that the two can manage
power jointly while perceiving QoS.

6.3 Component Analysis

In this section, we explore the components of Orthrus to
better understand their contribution to system performance.
We implement three subdivided versions of Orthrus to
study the contribution of each component: 1) Orthrus-Wog
has the FSM-based scheduler but does not enable the PPO-
based governor, 2) Orthrus-Wos has the PPO-based gover-
nor but does not enable the FSM-based scheduler, and 3)
Orthrus-Woc has the FSM-based scheduler and PPO-based
governor, but does not enable the coordinator to exchange
information between them. Fig. 12-14 shows the comparison
results on three applications.

For the governor, Orthrus-Wog has a higher QoS penalty
than Orthrus, and consumes 20.8% more power than Or-
thrus on average. This is because when governing is un-
aware of QoS, the cluster will often erroneously run at
a higher frequency due to the single indicator of CPU
utilization. As shown in Fig. 14, both clusters of Orthrus-
Wog run at the highest frequency most of the time. Power
consumption is wasted when the cluster is mostly running
threads unrelated to QoS. For the scheduler, the QoS loss
of Orthrus-Wos is much higher than Orthrus, but the power
consumption is similar. This is because the scheduler prefers
to use governing rather than scheduling to transfer state,
and the governing hints given to the governor are usually
more aggressive than the DRL-agent. Thus, Fig. 14 shows
that Orthrus-Wos is more in the middle and low frequency
than Orthrus-Wog. However, if there is no perception of QoS,
the scheduler will not transfer to the moderate state that
satisfies QoS, but strives for the lowest power consumption,
which will cause serious QoS degradation. For the coordi-
nator, the frequency of Orthrus-Woc is only controlled by the
governor, which is roughly consistent with the distribution
of Orthrus-Wos. However, its QoS and power consumption
are inferior to Orthrus due to the lack of synergy between
the two. These results indicate the importance of three
components. Orthrus is able to combine the advantages to
achieve better performance.
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Fig. 15: QoS loss and power consumption of Orthrus,
Orthrus-QoS and Orthrus-Power on various applications

TABLE 5: The impact of time intervals of governing.

Interval(s) FPS Power (mW)
0.1 58.6 1711
0.5 58.9 1632
1 59.1 1597
2 58.5 1560
3 58.1 1540

6.4 Sensitivity Analysis

In this section, we investigate the effect of system parame-
ters on Orthrus performance and power gains.

α and β in reward function of governing approach. As
mentioned in Section 4.1, α and β can be used as trade-off
weights to balance performance and power consumption.
When the value of α increases and β decreases, the RL agent
prioritizes ensuring user experience. Conversely, when α
decreases and β increases, the RL agent prioritizes reducing
power consumption. We have named the former Orthrus-
QoS (r(t) = Q(t), α = 1, β = 0), and the latter Orthrus-
Power (r(t) = P (t), α = 0, β = 1). As shown in Fig. 15,
we find that under light workload conditions, Orthrus and
Orthrus-QoS have similar QoS, but power consumption is
much lower for Orthrus. This is because each application
has a target frame rate, and Orthrus-QoS tries to meet QoS
by using high frequencies as much as possible, ignoring the
fact that the low frequency can also meet QoS with lower
power consumption. The power consumption of Orthrus
is higher than that of Orthrus-Power, but its QoS is much
higher too. This is because Orthrus-Power tries to achieve
low power consumption by using low frequencies as much
as possible, but these frequencies cannot satisfy QoS.

Time interval of governing approach. The time inter-
val of the governing algorithm plays a crucial role in its
performance. As demonstrated in Table 5, if the interval
is too long, the algorithm may be slow in responding to
changes in system conditions. On the other hand, if the
interval is too short, it can result in excessive delay and
power consumption overhead. Therefore, we opted to use a
time interval of 1 second for the governing algorithm.

6.5 Runtime Overhead

We analyze the overhead of Orthrus from three aspects:
time, memory usage, and power consumption. In terms of
time, the delay of Orthrus has the following components: 1)
collecting system and application information, 2) scheduling

0.4

Target

0.6

0.8

Max

N
or

m
al

iz
ed

 Q
oS

default
zTT

Smartbalance
AdaMD

Orthrus

TikTok PDF Viewer Dhrystone
Application

1000

1500

2000

2500

3000

3500

4000

Po
w

er
 c

on
su

m
pt

io
n

(a) Target QoS = 0.5 Max QoS.

0.4

0.6

0.8

Target

Max

N
or

m
al

iz
ed

 Q
oS

default
zTT

Smartbalance
AdaMD

Orthrus

TikTok PDF Viewer Dhrystone
Application

1000

1500

2000

2500

3000

3500

4000

Po
w

er
 c

on
su

m
pt

io
n

(b) Target QoS = 0.9 Max QoS.

Fig. 16: QoS and power consumption of Orthrus with differ-
ent QoS metrics and different target QoS.

algorithms and governing agent inference, and 3) perform-
ing scheduling and governing actions. These delays are all
affected by the computing capacity, ranging from 35 ms
to 174 ms. Since the interval used by the algorithm is 1
s, the latency is acceptable. In addition, the delay mainly
comes from the third step of running the command. If it
is subsequently implemented in the kernel, the latency will
be further reduced. For memory usage, the service requires
42 MB of memory, which is 1% of all memory (4 GB for
Google Pixel 3). If using a more advanced mobile phone, the
proportion usage of memory will be smaller, which will not
affect the user experience. For power consumption, running
Orthrus consumes an average of 180 mW. Since the power
consumption of the whole system is between 1500 mW and
5000 mW, Orthrus can help reduce the power consumption
by more than 180 mW compared to default even under the
lightest load. Therefore, the power consumption overhead
of Orthrus is also negligible.

6.6 QoS Adaptability
In this section, we aim to assess Orthrus’s ability to learn
applications and adapt to diverse performance requirements
by selecting various QoS metrics, including frame rate,
latency, and IPS, along with different target QoS values.
First, we define Max QoS as the QoS provided by the
maximum computing capacity (all threads of the application
run at the highest frequency of the big cluster) of the
system under light workload. Then, we run applications
with different QoS metrics in three scenarios. We incorpo-
rate two additional applications of different types, namely
Adobe PDF Viewer and Dhrystone [40]. For PDF Viewer, the
latency in processing time is a crucial factor influencing
user experience [41], hence chosen as the QoS metric. As for
the Dhrystone benchmark, we observe its IPS as the metric
for its QoS. Finally, we adjusted the target QoS to 0.5 Max
QoS (easily reachable) and 0.9 Max QoS (not reachable) to
observe the performance of Orthrus.

As depicted in Figure 16(a), when targeting a QoS of 0.5
Max QoS, Orthrus effectively ensures QoS while achieving
superior power savings compared to other baselines. This
is attributed to the generality of our approach, allowing
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TABLE 6: Device specifications. l denotes LITTLE CPU; b
denotes Big CPU; s denotes Super Big CPU.

Device Google Pixel 3 Google Pixel 6 OPPO Find X3 Pro

SoC SDM845 Google Tensor SM8350

LITTLE CPU
4x1.6 GHz

Kryo 385 Silver
4x1.80 GHz
Cortex-A55

4x1.80 GHz
Cortex-A55

Big CPU
4x2.5 GHz

Kryo 385 Gold
2x2.25 GHz
Cortex-A76

3x2.42 GHz
Cortex-A78

Super Big CPU ✕
2x2.80 GHz
Cortex-X1

1x2.84 GHz
Cortex-X1

# Frequency
(l/b/s)

18/22/✕ 11/14/17 16/16/19

OS Android 11 Android 13 Android 13

Orthrus to sense and guarantee any QoS metric with a target
that can be quantified. Additionally, the reward function
does not grant rewards beyond the target QoS, leading to
substantial power consumption savings.

When the application’s performance demands increase,
with a target QoS of 0.9 Max QoS, as depicted in Figure
16(b), both default and Smartbalance exhibit minimal changes
in QoS and power consumption. This is because they are
unable to sense QoS changes, resulting in the failure to
meet the target QoS. Although the remaining two base-
lines are QoS-aware, Orthrus, capable of jointly employing
scheduling and governing technology under QoS aware-
ness, demonstrates superior QoS and greater power savings
compared to AdaMD and zTT. Therefore, we can see that
Orthrus has good adaptability to different QoS metrics and
target QoS, striving to ensure QoS while saving power
consumption as much as possible.

6.7 Scalability Analysis
To evaluate the scalability of Orthrus, we utilize TikTok as
the foreground application on mobile devices with varying
CPU architectures, as outlined in Table 6. We observe the
QoS and power consumption of Orthrus in three scenarios.
Changes in CPU architecture resulted in variations in the
number of CPU frequency points and CPU clusters. From
a scheduling perspective, the method of controlling state
transition in the algorithm has evolved from migrating to
another cluster to migrating to two other clusters, with no
significant increase in complexity. For governing, this means
an increase in action space. Taking Google Pixel 6 as an
example, if all frequency points are used as actions of the RL
agent, the output layer of the neural network would com-
prise 2618 nodes, significantly impacting training overhead
and model effectiveness. Therefore, we explore the effect of
the action space size on Orthrus.

As shown in Figure 17(a), we control the number of
actions sampled in each cluster on Google Pixel 6 and
observe the changes in QoS, power consumption, action
space size, and RL agent’s training time. The governing
action space grows cubically as the number of actions per
cluster increases. At this point, power consumption and QoS
show certain improvements. However, when the actions
per cluster exceed 4, the time for model training to reach
convergence increases significantly due to the enlarged ac-
tion space. Additionally, excessively fine-grained control of
CPU frequency leads to less noticeable data differences, so
power consumption and QoS do not exhibit the same levels
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Fig. 17: Scalability analysis.

of improvement. Therefore, on hardware with dozens of
frequency points in each cluster, only a certain number of
frequency points need to be sampled on average.

While the CPU architecture has an influence on schedul-
ing and governing, it is important to note that this impact
is relatively minor, as mentioned earlier. As depicted in
Figure 17(b), there is a noticeable decline in Orthrus’ perfor-
mance as the complexity of the CPU architecture increases.
Nevertheless, it is noteworthy that Orthrus still achieves
significant power savings compared to default approach.
This underscores the scalability of Orthrus, demonstrating
its ability to ensure QoS while reducing power consumption
across diverse CPU architectures.

7 A CASE STUDY

In this section, we demonstrate the application of Orthrus
in the daily use of smartphones by users, which includes
different scenarios such as video streaming, text messaging,
gaming, etc. In preparation, we trained several models and
stored them in the phone’s memory. As the phone starts
up, Orthrus runs automatically as a system service. When
users use different applications, Orthrus promptly selects
and loads an appropriate model to schedule the foreground
application while adjusting the hardware frequency. We
tested Orthrus on the Oneplus 9 Pro, which includes three
different types of cores and can adjust 4 frequencies for
each cluster. To demonstrate the performance of Orthrus
clearly, we suggest a slight constraint where users should
use Skype, TikTok, and PUBG in a specific sequence. This
way, we can clearly see how the frequency and position of
threads have changed. The user’s total time using the phone
lasted for one hour.

Fig. 18 shows the performance of Orthrus when users
use various applications. The two subfigures on the top
depict the frame rate and power consumption of a phone
over a period of time, while the bottom two subfigures show
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Fig. 18: The performance of Orthrus while operating with
various applications in users’ daily lives.

dynamic changes in frequency and thread location in the
system. We can see that Orthrus can successfully adjust the
frequency and schedule threads for different applications.
For example, when users switch from Skype to PUBG (third
red dash line), the frequency of all three clusters is increased,
UI Thread and Render Thread are migrated to the super
big (sbig) cluster, and SurfaceFlinger is migrated from the
LITTLE cluster to the big cluster.

We collect the same trace for the native system and
find Orthrus can guarantee QoS loss within 0.1% for each
application, with a 10% reduction in power consumption
compared to the native system. We further estimate the
overhead of Orthrus and find that when switching between
different applications, the model loading time ranges from
10-40 ms, which is negligible compared to the time users
spend on their phones daily. Moreover, Orthrus occupies
no more than 2% of CPU resources and 1% of memory
resources. Overall, we believe Orthrus can be deployed on
mobile devices to ensure QoS and increase battery life.

8 RELATED WORK

In the research literature, Orthrus falls into the area of QoS-
aware power management that jointly leverages scheduling and
governing technologies on mobile devices.

Scheduling on Mobile Devices. Scheduling technology,
as the main module in the kernel, is crucial to the system.
However, the current scheduling strategy cannot meet the
needs of all scenarios, so a lot of work optimizes scheduling
for different goals, such as Naithani et al. [42] proposed
reliability-aware scheduling on heterogeneous multi-core
processors, which monitored the reliability characteristics of
applications and dynamically scheduled applications to the
different clusters to maximize system reliability. Since the
computing capacity of different clusters of heterogeneous
platforms is different, there are studies such as Kim et al.
[43], Saez et al. [44] and Salami et al. [15] focused on using
scheduling technology to improve the fairness of the system.
There are also some works on how scheduling improves
system performance and power consumption. Feng et al.
[45] exploited the event-driven nature of mobile Web appli-
cations, and speculatively executed future events ahead of
time in a way that satisfies the QoS while minimizing global
energy consumption. Djigal et al. [46] presented BUDA
that schedules tasks under budget and deadline constraints
to minimize execution time. For concurrent applications,

Shamsa et al. [47] combined an offline power-performance
model of each application with an online predictive strategy
to make resource allocation decisions for minimizing energy
consumption while honoring performance requirements.
Yu et al. [48] made coordinated core assignment and thread
selection decisions based on the performance of each thread
on cores and communication patterns.

Governing on Mobile Devices. Governing the hetero-
geneous cores on mobile devices based solely on CPU
utilization is a common practice, but it will cause perfor-
mance loss and power consumption waste due to ignoring
the characteristics of the system and application. Therefore,
there are many optimization methods for governing, which
can be divided into traditional methods and learning-based
methods. Traditional approaches, such as Pathania et al. [49],
used power and performance models to predict the impact
of governing on mobile workloads. Chen et al. [50] proposed
a heuristic-based algorithm to adjust the CPU frequency
based on the video quality adaptively. Yang et al. [51] mod-
eled the effects of CPU frequency on TCP throughput and
system power. Then a governing algorithm was proposed
to save data transmission and CPU energy. Benmoussa et
al. [52] designed a green metadata-based DVFS scheme for
energy-efficient decoding videos. Deshwal et al. [53] pro-
posed PaRMIS, a novel information-theoretic framework, to
create Pareto-optimal governing policies for given target ap-
plications and design objectives. Learning-based methods,
such as that proposed by Kim et al. [12] utilized a RL-based
governor that jointly scaled CPU and GPU frequencies to
maximize performance in an energy-efficient manner. Man-
dal et al. [54] proposed an online imitation learning method
to construct an offline policy and optimize a given metric
(e.g. energy). Choi et al. [55] exploited the RL technique
to learn the optimal execution speed of the web browser’s
processes, and adjusted the speed at runtime, thus saving
energy and ensuring the QoS. These works lack the study
of the interaction between scheduling and governing, which
wastes space to reduce power consumption further.

QoS-aware Power Management. Defining QoS precisely
is a challenging task in the realm of mobile devices, given its
diverse interpretations in research. Unlike real-time schedul-
ing, the tasks addressed in this paper are not time-sensitive,
and QoS can be defined in various ways without a decline
resulting in serious failures. For mobile devices, QoS can be
variously defined as frame rate [56] [57], latency of user-
triggered events [24] [58], or IPS [19], among others. These
studies employ different methodologies to ensure QoS. For
instance, Sahin et al. [56] coordinated closed-loop frequency
control with thermally-efficient scheduling to deliver the
desired QoS. Qian et al. [59] considered the inherent connec-
tion between the device’s state of motion, BS factor, video
bitrate and QoS to achieve better QoS and save energy.
Rapp et al. [19] adopted imitation learning-based scheduling
and governing, focusing on an objective QoS measured in
IPS. Donyanavard et al. [60] optimized reliability under QoS
using migration and DVFS implemented at hardware and
software layers. Building upon this prior work, our study
adopts frame rate as the QoS metric and makes scheduling
and governing work jointly to meet the QoS, which has not
been explored in existing studies.



IEEE TRANSACTIONS ON MOBILE COMPUTING, APRIL 2023 15

9 CONCLUSION

In this paper, we proposed Orthrus, a scheduling and gov-
erning co-optimization approach to optimize the QoS and
the power consumption on mobile platforms. We found
the decoupled designs among the scheduling method, the
governing method and the QoS optimization led to QoS
degradation and power wastage. To address the issues, we
proposed a finite state machine-based scheduler and a prox-
imal policy optimization-based governer, which migrate
QoS-related threads and control the frequency of different
clusters while perceiving QoS, and an expert fuzzy control-
based coordinator making the scheduler and governor work
together to further improve QoS and minimize power con-
sumption. We presented an Orthrus prototype implemen-
tation and evaluated Orthrus through different situations.
We developed a case study that demonstrates Orthrus can
be applied to users’ daily use of mobile phones, where its
effective scheduling and governing ensure QoS and reduce
power consumption.
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